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Abstract
Pathwise predictability of continuous-time processes is studied in a
deterministic setting. We discuss uniform prediction in some weak sense with
respect to certain classes of inputs. More precisely, we study the possibility of
approximation of convolution integrals over future time by integrals over past
time. We found that all band-limited processes are predictable in this sense
as well as high-frequency processes with zero energy at low frequencies. It
follows that a process of mixed type can still be predicted if an ideal low-pass
filter exists for this process.

PACS numbers: 02.30.Mv, 02.30.Nw, 02.30.Yy, 07.05.Mh, 07.05.Kf
Mathematics Subject Classification: 60G25, 93E10, 42B30

1. Introduction

We study pathwise predictability of continuous-time processes in a deterministic setting. It
is well known that certain restrictions on the frequency distribution can ensure additional
opportunities for prediction and interpolation of the processes. The classical result is the
Nyquist–Shannon–Kotelnikov interpolation theorem for the low-band processes. There are
related predictability results for the low-band processes (see, e.g., Wainstein and Zubakov
(1962), Beutler (1966), Brown (1969), Slepian (1978), Knab (1981), Papoulis (1985), Marvasti
(1986), Vaidyanathan (1987) and Lyman et al (2000, 2001)).

In the present paper, we study a special kind of weak predictability such that convolution
integrals over future times can be approximated by convolution integrals over past times
representing historical observations. We found some cases when this approximation can be
made uniformly over a wide class of input processes. We found that all band-limited processes
are predictable in this sense. A similar result is obtained for high-frequency processes. For
the processes of mixed type, we found that a similar predictability can be achieved when the
model allows a low-pass filter that acts as an ideal low-pass filter for this process. These results
can be a useful addition to the existing theory of band-limited processes. The novelty is that
we consider predictability of both high-frequency and band-limited processes in a weak sense
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uniformly over classes of input processes. In addition, we suggest a new type of predictor. Its
kernel is given explicitly in the frequency domain.

2. Definitions

Let I denote the indicator function, R+ �= [0, +∞), C+ �= {z ∈ C : Re z > 0}, i = √−1.
For complex-valued functions x ∈ L1(R) or x ∈ L2(R), we denote by X = Fx the

function defined on iR as the Fourier transform of x:

(Fx)(iω) =
∫ ∞

−∞
e−iωtx(t) dt, ω ∈ R.

If x ∈ L2(R), then X is defined as an element of L2(R).
For v(·) ∈ L2(R) such that v(t) = 0 for t < 0, we denote by Lv the Laplace transform:

V (p) = (Lv)(p)
�=

∫ ∞

0
e−ptv(t) dt, p ∈ C+. (2.1)

Let Hr be the Hardy space of holomorphic on C+ functions h(p) with a finite norm
‖h‖Hr = sups>0 ‖h(s + iω)‖Lr (R), r ∈ [1, +∞] (see, e.g., Duren (1970)).

Let � > 0 be given.

Definition 1. Let K be the class of functions k : R → R such that k(t) = 0 for t > 0 and
such that K = Fk is

K(iω) = d(iω)

δ(iω)
, (2.2)

where d(·) and δ(·) are polynomials such that deg d < deg δ, and if δ(p) = 0 for p ∈ C then
Re p > 0, |Im p| < �.

Note that the classK is quite wide: it consists of linear combinations of functions q(t) eλt
I{t�0},

where λ ∈ C, Re λ > 0, |Im λ| < �, and where q(t) is a polynomial.

Definition 2. Let K̂ be the class of functions k̂ : R → R such that k(t) = 0 for t < 0 and
such that K(·) = L̂k ∈ H 2 ∩ H∞.

We are going to study linear predictors in the form ŷ(t) = ∫ t

−∞ k̂(t−s)x(s) ds for the processes
y(t) = ∫ +∞

t
k(t − s)x(s) ds, where k ∈ K and k̂ ∈ K̂ . The predictors use historical values of

the currently observable process x(·).
Definition 3. Let X = {x(·)} be a class of functions x : R → C. Let r ∈ [1, +∞].

(i) We say that the class X is Lr -predictable in the weak sense if, for any k(·) ∈ K, there
exists a sequence {̂km(·)}+∞

m=1 = {̂km(·,X , k)}+∞
m=1 ⊂ K̂ such that

‖y − ŷm‖Lr (R) → 0 as m → +∞ ∀x ∈ X ,

where

y(t)
�=

∫ +∞

t

k(t − s)x(s) ds, ŷm(t)
�=

∫ t

−∞
k̂m(t − s)x(s) ds.

(ii) Let the set F(X )
�= {X = Fx, x ∈ X } be provided with a norm ‖·‖. We say that the class

X is Lr -predictable in the weak sense uniformly with respect to the norm ‖·‖, if, for any
k(·) ∈ K and ε > 0, there exists k̂(·) = k̂(·,X , k, ‖·‖, ε) ∈ K̂ such that

‖y − ŷ‖Lr (R) � ε‖X‖ ∀x ∈ X , X = Fx.

Here y(·) is the same as above, ŷ(t)
�= ∫ t

−∞ k̂(t − s)x(s) ds.

We call functions k̂(·) in definition 3 predictors or predicting kernels.
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3. The main result

Let � > 0 be the same as in the definition of K, and let

XL
�= {x(·) ∈ L2(R) : X(ω) = 0 if |ω| > �, X = Fx},

XH
�= {x(·) ∈ L2(R) : X(ω) = 0 if |ω| < �, X = Fx}.

In particular, XL is a class of band-limited processes and XH is a class of high-frequency
processes.

3.1. Predictability of band-limited and high-frequency processes from L2

Theorem 1.

(i) The classes XL and XH are L2-predictable in the weak sense.
(ii) The classes XL and XH are L∞-predictable in the weak sense uniformly with respect to

the norm ‖·‖L2(R).
(iii) For any q > 2, the classes XL and XH are L2-predictable in the weak sense uniformly

with respect to the norm ‖·‖Lq(R).

Remark 1. Since the constant � is the same for the classes K,XL,XH , the set of k(·) ∈ K
such that the corresponding processes y(·) can be predicted is restricted for x(·) ∈ XH . On the
other hand, these restrictions are absent for band-limited processes x(·) ∈ XL, since they are
automatically included in all similar classes with larger �, i.e., the constant � in the definition
of XL can always be increased.

The question arises regarding how to find the predicting kernels. In the proof of theorem 1, a
possible choice of the kernels is explicitly given via Fourier transforms.

3.2. Predictability for some bounded processes

Let C(R) be the Banach space of all bounded and continuous functions f : R → C, and
let C(R)∗ be the dual space for C(R), i.e., it is the space of all linear continuous functionals
ξ : C(R) → C (see, e.g., Yosida (1980)).

Let M∞ be the class of all processes x(t) : R → C such that there exist a function
Xc ∈ L1(R), a sequence {ωk}+∞

k=1 ⊂ R and a sequence {ck}+∞
k=1 ⊂ C such that

∑+∞
k=1 |ck| < +∞

and

x(t) = 1

2π

∞∑
k=1

ck eiωkt +
1

2π

∫ +∞

−∞
eiωtXc(ω) dω.

Clearly, any set X
�= ({ωk}+∞

k=1, {ck}+∞
k=1, Xc) with the required properties is uniquely defined

by the process x ∈ M∞ and can be associated with a unique element of C(R)∗ such that

〈f,X〉 =
∞∑

k=1

ckf (ωk) +
∫ +∞

−∞
f (ω)Xc(ω) dω ∀f ∈ C(R).

In particular, x(t) = 〈
1

2π
eit ·, X

〉
for all t. We will denote this relationship as X = Fx, using

the same notation as for the Fourier transform, and we extend definition 3 on this case (it is a
frequency representation, but not a Fourier transform anymore). As required in definition 3,
we provide the set {X} of these sets X with the norm ‖·‖C(R)∗ .

If x ∈ M∞, then |x(t)| � (2π)−1‖eit ·‖C(R)‖X‖C(R)∗ . Hence all functions from M∞ are
bounded on R.
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Let ε ∈ (0,�) be given. Let

ML
�= {x ∈ M∞ : |ωk| � � − ε(∀k), supp Xc ⊆ [−� + ε,� − ε]},

MH
�= {x ∈ M∞ : |ωk| � � + ε(∀k), supp Xc ⊆ (−∞,−� − ε] ∪ [� + ε, +∞)}.

ML is a class of band-limited processes and MH is a class of high-frequency processes.

Theorem 2. The classes ML and MH are L∞-predictable in the weak sense uniformly with
respect to the norm ‖·‖C(R)∗ .

4. On a model with an ideal low-pass filter

Corollary 1. Assume a model with a process x(·) such that an observer is able to decompose
it as x(t) = xL(t) + xH (t), where xL(·) ∈ XL ∪ ML and xH (·) ∈ XH ∪ MH . Then
this observer would be able to predict (approximately, in the sense of weak predictability)
the values of y(t) = ∫ +∞

t
k(t − s)x(s) ds for k(·) ∈ K by predicting the processes

yL(t) = ∫ +∞
t

k(t − s)xL(s) ds and yH (t) = ∫ +∞
t

k(t − s)xH (s) ds separately. More precisely,

the process ŷ(t)
�= ŷL(t) + ŷH (t) is the prediction of y(t), where yL(t) = ∫ t

−∞ k̂L(t−s)xL(s) ds

and yH (t) = ∫ t

−∞ k̂H (t − s)xH (s) ds, and where k̂L(·) and k̂H (·) are predicting kernels whose
existence for the processes xL(·) and xH (·) is established above.

Let χL(ω)
�= I{|ω|��} and χH (ω)

�= 1 − χL(ω) = I{|ω|>�}, where ω ∈ R.
The assumptions of corollary 1 mean that there are a low-pass filter and a high-pass filter

with the transfer functions χL and χH , respectively, with x(·) as the input, i.e., that the values
xL(s) and xH (s) for s � t are available at time t, where

xL(·) �= F−1XL, XL(ω)
�= χL(ω)X(ω), xH (·) �= F−1XH , XH(ω)

�= χH (ω)X(ω),

and where X
�= Fx. It follows that the predictability in the weak sense described in definition 3

is possible for any process x(·) that can be decomposed without error on a band-limited process
and a high-frequency process, i.e., when there is a low-pass filter which behaves as an ideal
filter for this process. (Since xH (t) = x(t)− xL(t), the existence of the low-pass filter implies
the existence of the high-pass filter). On the other hand, corollary 1 implies that the existence
of ideal low-pass filters is impossible for general processes, since they cannot be predictable
in the sense of definition 3.

Clearly, processes x(·) ∈ XL ∪XH ∪ML ∪MH are automatically covered by corollary 1,
i.e., the existence of the filters is not required for this case. For instance, we have immediately
that xL(·) = x(·) and xH (·) ≡ 0 for band-limited processes.

5. Proofs

Let k(·) ∈ K and K(iω) = Fk. Let (2.2) holds with δ(p) = ∏n
m=1 δm(p), where

δm(p)
�= p − am + bmi, and where am, bm ∈ R, p ∈ C. By the assumptions on K, we

have that am > 0 and |bm| < �.
It suffices to present a set of predicting kernels k̂ with the desired properties. We will use

a version of the construction introduced in Dokuchaev (1996) for an optimal control problem.
This construction is very straightforward and does not use the advanced theory of Hp-spaces.
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For γ ∈ R, set

αm = �2 − b2
m

am

, Vm(p)
�= 1 − exp

(
γ

p − am + bmi

p + αm − bmi

)
, V (p)

�=
n∏

m=1

Vm(p),

K̂(iω)
�= V (iω)K(iω).

Lemma 1.

(i) V (p) ∈ H 2 ∩ H∞ and K̂(p)
�= K(p)V (p) ∈ H 2 ∩ H∞:

(ii) If γ > 0 and ω ∈ [−�,�], then |V (iω)| � 1. If γ < 0, and if ω ∈ R, |ω| � �, then
|V (iω)| � 1.

(iii) If ω ∈ (−�,�), then V (iω) → 1 as γ → +∞. If ω ∈ R and |ω| > �, then V (iω) → 1
as γ → −∞.

(iv) For any ε > 0, V (iω) → 1 as γ → +∞ uniformly in ω ∈ [−� + ε,� − ε] as γ → +∞,
and V (iω) → 1 as γ → −∞ uniformly in ω ∈ R such that |ω| � � + ε.

Proof of lemma 1. Clearly, Vm(p) ∈ H∞, and δm(p)−1Vm(p) ∈ H 2 ∩ H∞, since
the pole of δm(p)−1 is being compensated by multiplying on Vm(p). It follows that
K(p)V (p) ∈ H 2 ∩ H∞. Then statement (i) follows.

Further, for ω ∈ R,

iω − am + bmi

iω + αm − bmi
= (−am + iω + ibm)(αm − iω + bmi)

(ω − bm)2 + a2
m

= −amαm + (ω + bm)(ω − bm)

(ω − bm)2 + α2
m

+ i
−am(ω + bm) + αm(ω + bm)

(ω − bm)2 + α2
m

.

Then,

Re
iω − am + bmi

iω + αm − bmi
= −amαm + ω2 − b2

m

(ω − bm)2 + α2
m

= ω2 − �2

(ω − bm)2 + α2
m

.

Then statements (ii)–(iv) follow. This completes the proof of lemma 1. �

Proof of theorem 1. For x(·) ∈ L2(R), let X
�= Fx, Y

�= Fy = K(iω)X(ω). Let V be as
defined above. Set Ŷ (ω)

�= K̂(iω)X(ω) = V (iω)Y (ω).
Let us consider the cases of XL and XH simultaneously. For the case of the class XL,

consider γ > 0 and assume that γ > 0 and γ → +∞. Set D
�= [−�,�] for this case.

For the case of the class XH , consider γ < 0 and assume that γ < 0 and γ → −∞. Set
D

�= (−∞,−�] ∪ [�, +∞) for this case.
Let x(·) ∈ XL or x(·) ∈ XH . In both cases, lemma 1 gives that |V (iω)| � 1 for all ω ∈ D.

If γ → +∞ or γ → −∞ respectively for XL or XH cases, then V (iω) → 1 for a.e. ω ∈ D,
i.e., for a.e. ω such that X(ω) �= 0.

Let us prove (i). Since K(iω) ∈ L∞(R) and X ∈ L2(R), we have that Y (ω) =
K(iω)X(ω) ∈ L2(R) and Ŷ ∈ L2(R). By lemma 1, it follows that

Ŷ (ω) → Y (ω) for a.e. ω ∈ R, (5.1)

as γ → +∞ or γ → −∞ respectively for XL or XH cases. We have that X ∈ L2(R),K(iω) ∈
L2(R) ∩ L∞(R) and

|K̂(iω) − K(iω)| � |V (iω) − 1||K(iω)| � 2|K(iω)|, ω ∈ D, (5.2)

|Ŷ (ω) − Y (ω)| � 2|Y (ω)| = 2|K(iω)||X(ω)|, ω ∈ D. (5.3)
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By (5.1), (5.3) and by the Lebesque dominance theorem, it follows that

‖Ŷ − Y‖L2(R) → 0, i.e., ‖̂y − y‖L2(R) → 0, (5.4)

as γ → +∞ or γ → −∞ respectively for XL or XH cases, where ŷ = F−1Ŷ .
Let us prove (ii)–(iii). Take d = 1 for (ii) and take d = 2 for (iii). If X ∈ Lq(R) for

q > d, then Hölder inequality gives

‖Ŷ − Y‖Ld(R) � ‖K̂(iω) − K(iω)‖Lµ(D)‖X‖Lq(D), (5.5)

where µ is such that 1/µ + 1/q = 1/d. By (5.2) and by the Lebesque dominance theorem
again, it follows that

‖K̂(iω) − K(iω)‖Lµ(D) → 0 ∀µ ∈ [1, +∞), (5.6)

as γ → +∞ or γ → −∞ respectively for XL or XH cases. By (5.5) and (5.6), it follows
that the predicting kernels k̂(·) = k̂(·, γ ) = F−1K̂(iω) are as required in statements (ii)–(iii).
This completes the proof of theorem 1. �

Proof of theorem 2. For x(·) ∈ M∞ such that X = ({ωk}+∞
k=1, {ck}+∞

k=1, Xc

)
, we have that the

corresponding set Y = Fy is Y = ({ωk}+∞
k=1, {K(iωk)ck}+∞

k=1,K(iω)Xc(ω)
)
. Similarly to X,

it can be considered as element of C(R)∗ such that y(t) = 〈
1

2π
eit ·, Y

〉
. Let V and K̂ be as

defined above. Set

Ŷ
�= ({ωk}+∞

k=1, {K̂(iωk)ck}+∞
k=1, K̂(iω)Xc(ω)

)
.

It can be seen as an element of C(R)∗, and ŷ(t) = ∫ t

−∞ k̂(t − s)x(s) ds = 〈
1

2π
eit ·, Ŷ

〉
, where

the kernel is defined via the inverse Fourier transform k̂(·) = F−1K̂(iω).
We consider the cases of ML and MH simultaneously. For the case of the class ML, we

consider γ > 0 and γ → +∞. Set Dε
�= [−� + ε,� − ε] for this case. For the case of the

class MH , we consider γ < 0 and γ → −∞. Set Dε
�= (−∞,−� − ε] ∪ [� + ε, +∞) for

this case.
Let x(·) ∈ ML or x(·) ∈ MH . In both cases, lemma 1 gives that |V (iω)| � 1 for all

ω ∈ Dε. If γ → +∞ or γ → −∞ respectively for ML or MH cases, then V (iω) → 1
uniformly in ω ∈ Dε. Hence ‖K̂ − K‖L∞(Dε) → 0 as γ → +∞ or γ → −∞, for the cases
of ML and MH , respectively. If x ∈ ML or x ∈ MH , then

|〈f,X〉| � max
t∈Dε

|f (t)|‖X‖C(R)∗ ∀f ∈ C(R), X = Fx.

Hence,

|̂y(t) − y(t)| =
∣∣∣∣
〈

1

2π
eit ·, Ŷ − Y

〉∣∣∣∣ =
∣∣∣∣
〈

1

2π
eit ·(K̂ − K),X

〉∣∣∣∣ � 1

2π
‖K̂ − K‖L∞(Dε)‖X‖C(R)∗

for all t ∈ R. Then the proof of theorem 2 follows. �

Corollary 1 follows immediately from theorem 1.

Remark 2. Formally, the corresponding predictors require the past values of x(s) for all
s ∈ (−∞, t], but it is not too restrictive, since

∫ t

−∞ k̂(t − s)x(s) ds can be approximated

by
∫ t

−M
k̂(t − s)x(s) ds for large enough M > 0. In addition, the corresponding transfer

functions can be approximated by rational fraction polynomials, and more general kernels k
can be approximated by kernels from K.

Remark 3. The system for the suggested predictors is stable, since the corresponding transfer
functions have poles in the domain {Re z < 0} only. However, the suggested predictors are

6
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not robust. For instance, if the predictor is designed for the class XL and applied to a process
x(·) /∈ XL with small nonzero energy at the frequencies outside [−�,�], then the error
generated by the presence of this energy increases if γ → ∞.
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